※ 김성훈 교수님의 [모두를 위한 딥러닝] 강의 정리
- 참고자료 : Andrew Ng's ML class
1) https://class.coursera.org/ml-003/lecture
2) http://holehouse.org/mlclass/ (note)
1. Logistic regression (= binary classfication)
2. Multinomial classification
3. Softmax classification
- softmax : ① sigmoid와 마찬가지로 0과 1사이의 값으로 변환, ② 변환된 결과에 대한 합계가 1이 되도록 해줌(≒ 확률)
(tensorflow의 softmax 함수 이용)
- one-hot encoding : softmax로 구한 값 중에서 가장 큰 값을 1로, 나머지를 0으로 만듦
(tensorflow의 argmax 함수 이용)
4. Cost function (=cross-entropy)
- S(Y) = sotmax가 예측한 값
- L = 실제 Y의 값
- Cost function = (sotmax가 예측한 값)과 (실제 Y의 값)의 차이를 계산 = Distance(S, L)
- Loss(=cost=error) = D(S,L)의 평균
- Gradient descent 알고리즘 = 미분을 통해 최소비용 찾기
5. Logistic cost VS cross entropy
- Logistic regression의 cost 함수 = Multinomial classification의 cross-entropy cost 함수
6. TensorFlow로 Softmax Classification의 구현
- hypothesis = tf.nn.softmax(tf.matmul(X,W)+b)
- cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis),axis=1))
- optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
6-1. code 구현
import tensorflow as tf |
tf.set_random_seed(777) # for reproducibility |
x_data = [[1, 2, 1, 1], |
[2, 1, 3, 2], |
[3, 1, 3, 4], |
[4, 1, 5, 5], |
[1, 7, 5, 5], |
[1, 2, 5, 6], |
[1, 6, 6, 6], |
[1, 7, 7, 7]] |
y_data = [[0, 0, 1], |
[0, 0, 1], |
[0, 0, 1], |
[0, 1, 0], |
[0, 1, 0], |
[0, 1, 0], |
[1, 0, 0], |
[1, 0, 0]] |
X = tf.placeholder("float", [None, 4]) # x_data와 같은 크기의 열 가짐. 행 크기는 모름. |
Y = tf.placeholder("float", [None, 3]) |
nb_classes = 3 |
W = tf.Variable(tf.random_normal([4, nb_classes]), name='weight') |
b = tf.Variable(tf.random_normal([nb_classes]), name='bias') |
# tf.nn.softmax computes softmax activations |
# softmax = exp(logits) / reduce_sum(exp(logits), dim) |
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b) |
# Cross entropy cost/loss |
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1)) |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) |
# Launch graph |
with tf.Session() as sess: |
sess.run(tf.global_variables_initializer()) |
for step in range(2001): |
_, cost_val = sess.run([optimizer, cost], feed_dict={X: x_data, Y: y_data}) |
if step % 200 == 0: |
print(step, cost_val) |
print('--------------') |
# Testing & One-hot encoding |
a = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9]]}) |
print(a, sess.run(tf.argmax(a, 1))) |
print('--------------') |
b = sess.run(hypothesis, feed_dict={X: [[1, 3, 4, 3]]}) |
print(b, sess.run(tf.argmax(b, 1))) |
print('--------------') |
c = sess.run(hypothesis, feed_dict={X: [[1, 1, 0, 1]]}) |
print(c, sess.run(tf.argmax(c, 1))) |
print('--------------') |
all = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9], [1, 3, 4, 3], [1, 1, 0, 1]]}) |
print(all, sess.run(tf.argmax(all, 1))) |
6-2. 결과값
(0, 6.926112)
(200, 0.60050154)
(400, 0.47295803)
(600, 0.37342972)
(800, 0.2801836)
(1000, 0.23280506)
(1200, 0.21065345)
(1400, 0.19229901)
(1600, 0.17682335)
(1800, 0.16359548)
(2000, 0.15216163)
--------------
a = (array([[1.3890485e-03, 9.9860197e-01, 9.0612575e-06]], dtype=float32), array([1]))
--------------
b = (array([[0.9311919 , 0.06290215, 0.00590591]], dtype=float32), array([0]))
--------------
c = (array([[1.2732816e-08, 3.3411387e-04, 9.9966586e-01]], dtype=float32), array([2]))
--------------
all = (array([[1.3890457e-03, 9.9860197e-01, 9.0612402e-06],
[9.3119192e-01, 6.2902153e-02, 5.9059057e-03],
[1.2732816e-08, 3.3411387e-04, 9.9966586e-01]], dtype=float32), array([1, 0, 2]))
7. TensorFlow로 Fancy Softmax Classifier 구현 (cross_entropy, one_hot, reshape)
7-1. softmax_cross_entropy_with_logits
- logits(=score) = tf.matmul(X, W) + b
- hypothesis = tf.nn.softmax(logits)
7-2. tensorflow 구현 (tensorflow 내장함수 이용)
# Cross entropy cost/loss
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis), axis=1)
# Cross entropy cost/loss
cost_i = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y_one_hot)
cost = tf.reduce_mean(cost_i)
7-3. 예제 : 동물 분류(Animal classification)
- tf.one_hot : one_hot을 사용하게 되면 하나의 차원의 수를 높여준다. 예를들어 [0, 3]의 행렬을 [[1000000], [0001000]]의 식으로 만들어 주게 된다.
- tf.reshape : 늘어난 차원의 수를 다시 줄이기 위해, reshape 함수를 이용한다.
- zoo.data : https://archive.ics.uci.edu/ml/machine-learning-databases/zoo/zoo.data
- 전체 소스코드
import tensorflow as tf |
import numpy as np |
tf.set_random_seed(777) # for reproducibility |
# Predicting animal type based on various features |
xy = np.loadtxt('data-04-zoo.csv', delimiter=',', dtype=np.float32) |
x_data = xy[:, 0:-1] |
y_data = xy[:, [-1]] |
print(x_data.shape, y_data.shape) |
''' |
(101, 16) (101, 1) |
''' |
nb_classes = 7 # 0 ~ 6 |
X = tf.placeholder(tf.float32, [None, 16]) # x_data(동물 형질 항목)의 개수 |
Y = tf.placeholder(tf.int32, [None, 1]) # 0 ~ 6 |
Y_one_hot = tf.one_hot(Y, nb_classes) # one hot, 차원의 수가 1차원 증가함 |
print("one_hot:", Y_one_hot) |
Y_one_hot = tf.reshape(Y_one_hot, [-1, nb_classes]) |
print("reshape one_hot:", Y_one_hot) |
''' |
one_hot: Tensor("one_hot:0", shape=(?, 1, 7), dtype=float32) |
reshape one_hot: Tensor("Reshape:0", shape=(?, 7), dtype=float32) |
''' |
W = tf.Variable(tf.random_normal([16, nb_classes]), name='weight') |
b = tf.Variable(tf.random_normal([nb_classes]), name='bias') |
# tf.nn.softmax computes softmax activations |
# softmax = exp(logits) / reduce_sum(exp(logits), dim) |
logits = tf.matmul(X, W) + b |
hypothesis = tf.nn.softmax(logits) |
# Cross entropy cost/loss |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, |
labels=tf.stop_gradient([Y_one_hot]))) |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) |
prediction = tf.argmax(hypothesis, 1) # probability -> 0~6 |
correct_prediction = tf.equal(prediction, tf.argmax(Y_one_hot, 1)) |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) |
# Launch graph (학습) |
with tf.Session() as sess: |
sess.run(tf.global_variables_initializer()) |
for step in range(2001): |
_, cost_val, acc_val = sess.run([optimizer, cost, accuracy], feed_dict={X: x_data, Y: y_data}) |
if step % 100 == 0: |
print("Step: {:5}\tCost: {:.3f}\tAcc: {:.2%}".format(step, cost_val, acc_val)) |
# Let's see if we can predict |
pred = sess.run(prediction, feed_dict={X: x_data}) |
# y_data: (N,1) = flatten => (N, ) matches pred.shape |
for p, y in zip(pred, y_data.flatten()): |
print("[{}] Prediction: {} True Y: {}".format(p == int(y), p, int(y))) |
- 결과값
Step: 0 Cost: 5.480 Acc: 37.62%
Step: 100 Cost: 0.806 Acc: 79.21%
Step: 200 Cost: 0.488 Acc: 88.12%
Step: 300 Cost: 0.350 Acc: 90.10%
Step: 400 Cost: 0.272 Acc: 94.06%
Step: 500 Cost: 0.222 Acc: 95.05%
Step: 600 Cost: 0.187 Acc: 97.03%
Step: 700 Cost: 0.161 Acc: 97.03%
Step: 800 Cost: 0.141 Acc: 97.03%
Step: 900 Cost: 0.124 Acc: 97.03%
Step: 1000 Cost: 0.111 Acc: 97.03%
Step: 1100 Cost: 0.101 Acc: 99.01%
Step: 1200 Cost: 0.092 Acc: 100.00%
Step: 1300 Cost: 0.084 Acc: 100.00%
Step: 1400 Cost: 0.078 Acc: 100.00%
Step: 1500 Cost: 0.072 Acc: 100.00%
Step: 1600 Cost: 0.068 Acc: 100.00%
Step: 1700 Cost: 0.064 Acc: 100.00%
Step: 1800 Cost: 0.060 Acc: 100.00%
Step: 1900 Cost: 0.057 Acc: 100.00%
Step: 2000 Cost: 0.054 Acc: 100.00%
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 3 True Y: 3
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 3 True Y: 3
[True] Prediction: 3 True Y: 3
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 3 True Y: 3
[True] Prediction: 6 True Y: 6
[True] Prediction: 6 True Y: 6
[True] Prediction: 6 True Y: 6
[True] Prediction: 1 True Y: 1
[True] Prediction: 0 True Y: 0
[True] Prediction: 3 True Y: 3
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 1 True Y: 1
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 5 True Y: 5
[True] Prediction: 4 True Y: 4
[True] Prediction: 4 True Y: 4
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 5 True Y: 5
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 3 True Y: 3
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 3 True Y: 3
[True] Prediction: 5 True Y: 5
[True] Prediction: 5 True Y: 5
[True] Prediction: 1 True Y: 1
[True] Prediction: 5 True Y: 5
[True] Prediction: 1 True Y: 1
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 6 True Y: 6
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 5 True Y: 5
[True] Prediction: 4 True Y: 4
[True] Prediction: 6 True Y: 6
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 1 True Y: 1
[True] Prediction: 1 True Y: 1
[True] Prediction: 1 True Y: 1
[True] Prediction: 3 True Y: 3
[True] Prediction: 3 True Y: 3
[True] Prediction: 2 True Y: 2
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 6 True Y: 6
[True] Prediction: 3 True Y: 3
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 2 True Y: 2
[True] Prediction: 6 True Y: 6
[True] Prediction: 1 True Y: 1
[True] Prediction: 1 True Y: 1
[True] Prediction: 2 True Y: 2
[True] Prediction: 6 True Y: 6
[True] Prediction: 3 True Y: 3
[True] Prediction: 1 True Y: 1
[True] Prediction: 0 True Y: 0
[True] Prediction: 6 True Y: 6
[True] Prediction: 3 True Y: 3
[True] Prediction: 1 True Y: 1
[True] Prediction: 5 True Y: 5
[True] Prediction: 4 True Y: 4
[True] Prediction: 2 True Y: 2
[True] Prediction: 2 True Y: 2
[True] Prediction: 3 True Y: 3
[True] Prediction: 0 True Y: 0
[True] Prediction: 0 True Y: 0
[True] Prediction: 1 True Y: 1
[True] Prediction: 0 True Y: 0
[True] Prediction: 5 True Y: 5
[True] Prediction: 0 True Y: 0
[True] Prediction: 6 True Y: 6
[True] Prediction: 1 True Y: 1
'Deep Learning' 카테고리의 다른 글
[머신러닝/딥러닝] 딥러닝의 기본 개념 (0) | 2019.12.18 |
---|---|
[머신러닝/딥러닝] 팁 : Learning rate, Preprocessing, Overfitting (0) | 2019.12.12 |
[머신러닝/딥러닝] Logistic (regression) classification 구현하기 by TensorfFlow (0) | 2019.12.04 |
[머신러닝/딥러닝] 파일에서 Tensorflow로 데이터 읽어오기 (0) | 2019.12.02 |
[머신러닝/딥러닝] multi-variable linear regression을 Tensorflow 구현 (0) | 2019.11.29 |